
22
INTERNET DATABASES

He profits most who serves best.

—Motto for Rotary International

The proliferation of computer networks, including the Internet and corporate ‘in-

tranets,’ has enabled users to access a large number of data sources. This increased

access to databases is likely to have a great practical impact; data and services can

now be offered directly to customers in ways that were impossible until recently. Elec-

tronic commerce applications cover a broad spectrum; examples include purchasing

books through a Web retailer such as Amazon.com, engaging in online auctions at a

site such as eBay, and exchanging bids and specifications for products between com-

panies. The emergence of standards such as XML for describing content (in addition

to the presentation aspects) of documents is likely to further accelerate the use of the

Web for electronic commerce applications.

While the first generation of Internet sites were collections of HTML files—HTML is

a standard for describing how a file should be displayed—most major sites today store

a large part (if not all) of their data in database systems. They rely upon DBMSs

to provide fast, reliable responses to user requests received over the Internet; this is

especially true of sites for electronic commerce. This unprecedented access will lead

to increased and novel demands upon DBMS technology. The impact of the Web

on DBMSs, however, goes beyond just a new source of large numbers of concurrent

queries: The presence of large collections of unstructured text documents and partially

structured HTML and XML documents and new kinds of queries such as keyword

search challenge DBMSs to significantly expand the data management features they

support. In this chapter, we discuss the role of DBMSs in the Internet environment

and the new challenges that arise.

We introduce the World Wide Web, Web browsers, Web servers, and the HTML

markup language in Section 22.1. In Section 22.2, we discuss alternative architec-

tures for making databases accessible through the Web. We discuss XML, an emerg-

ing standard for document description that is likely to supersede HTML, in Section

22.3. Given the proliferation of text documents on the Web, searching them for user-

specified keywords is an important new query type. Boolean keyword searches ask for

documents containing a specified boolean combination of keywords. Ranked keyword

searches ask for documents that are most relevant to a given list of keywords. We

642

Internet Databases 643

consider indexing techniques to support boolean keyword searches in Section 22.4 and

techniques to support ranked keyword searches in Section 22.5.

22.1 THE WORLD WIDE WEB

The Web makes it possible to access a file anywhere on the Internet. A file is identified

by a universal resource locator (URL):

http://www.informatik.uni-trier.de/˜ley/db/index.html

This URL identifies a file called index.html, stored in the directory ˜ley/db/ on

machine www.informatik.uni-trier.de. This file is a document formatted using

HyperText Markup Language (HTML) and contains several links to other files

(identified through their URLs).

The formatting commands are interpreted by a Web browser such as Microsoft’s

Internet Explorer or Netscape Navigator to display the document in an attractive

manner, and the user can then navigate to other related documents by choosing links.

A collection of such documents is called a Web site and is managed using a program

called a Web server, which accepts URLs and returns the corresponding documents.

Many organizations today maintain a Web site. (Incidentally, the URL shown above is

the entry point to Michael Ley’s Databases and Logic Programming (DBLP) Web site,

which contains information on database and logic programming research publications.

It is an invaluable resource for students and researchers in these areas.) The World

Wide Web, or Web, is the collection of Web sites that are accessible over the Internet.

An HTML link contains a URL, which identifies the site containing the linked file.

When a user clicks on a link, the Web browser connects to the Web server at the

destination Web site using a connection protocol called HTTP and submits the link’s

URL. When the browser receives a file from a Web server, it checks the file type by

examining the extension of the file name. It displays the file according to the file’s type

and if necessary calls an application program to handle the file. For example, a file

ending in .txt denotes an unformatted text file, which the Web browser displays by

interpreting the individual ASCII characters in the file. More sophisticated document

structures can be encoded in HTML, which has become a standard way of structuring

Web pages for display. As another example, a file ending in .doc denotes a Microsoft

Word document and the Web browser displays the file by invoking Microsoft Word.

22.1.1 Introduction to HTML

HTML is a simple language used to describe a document. It is also called a markup

language because HTML works by augmenting regular text with ‘marks’ that hold

special meaning for a Web browser handling the document. Commands in the language

644 Chapter 22

<HTML>

<HEAD></HEAD>

<BODY>

Science:

Author: Richard Feynman

Title: The Character of Physical Law

Published 1980

Hardcover

Fiction:

Author: R.K. Narayan

Title: Waiting for the Mahatma

Published 1981

Name: R.K. Narayan

Title: The English Teacher

Published 1980

Paperback

</BODY>

</HTML>

Figure 22.1 Book Listing in HTML

are called tags and they consist (usually) of a start tag and an end tag of the form

<TAG> and </TAG>, respectively. For example, consider the HTML fragment shown

in Figure 22.1. It describes a Web page that shows a list of books. The document is

enclosed by the tags <HTML> and </HTML>, marking it as an HTML document. The

remainder of the document—enclosed in <BODY> . . . </BODY>—contains information

about three books. Data about each book is represented as an unordered list (UL)

whose entries are marked with the LI tag. HTML defines the set of valid tags as well

as the meaning of the tags. For example, HTML specifies that the tag <TITLE> is a

valid tag that denotes the title of the document. As another example, the tag

always denotes an unordered list.

Audio, video, and even programs (written in Java, a highly portable language) can

be included in HTML documents. When a user retrieves such a document using a

suitable browser, images in the document are displayed, audio and video clips are

played, and embedded programs are executed at the user’s machine; the result is a

rich multimedia presentation. The ease with which HTML documents can be created—

Internet Databases 645

there are now visual editors that automatically generate HTML—and accessed using

Internet browsers has fueled the explosive growth of the Web.

22.1.2 Databases and the Web

The Web is the cornerstone of electronic commerce. Many organizations offer products

through their Web sites, and customers can place orders by visiting a Web site. For

such applications a URL must identify more than just a file, however rich the contents

of the file; a URL must provide an entry point to services available on the Web site.

It is common for a URL to include a form that users can fill in to describe what they

want. If the requested URL identifies a form, the Web server returns the form to the

browser, which displays the form to the user. After the user fills in the form, the form

is returned to the Web server, and the information filled in by the user can be used as

parameters to a program executing at the same site as the Web server.

The use of a Web browser to invoke a program at a remote site leads us to the role

of databases on the Web: The invoked program can generate a request to a database

system. This capability allows us to easily place a database on a computer network,

and make services that rely upon database access available over the Web. This leads

to a new and rapidly growing source of concurrent requests to a DBMS, and with

thousands of concurrent users routinely accessing popular Web sites, new levels of

scalability and robustness are required.

The diversity of information on the Web, its distributed nature, and the new uses

that it is being put to lead to challenges for DBMSs that go beyond simply improved

performance in traditional functionality. For instance, we require support for queries

that are run periodically or continuously and that access data from several distributed

sources. As an example, a user may want to be notified whenever a new item meeting

some criteria (e.g., a Peace Bear Beanie Baby toy costing less than $15) is offered for

sale at one of several Web sites. Given many such user profiles, how can we efficiently

monitor them and notify users promptly as the items they are interested in become

available? As another instance of a new class of problems, the emergence of the XML

standard for describing data leads to challenges in managing and querying XML data

(see Section 22.3).

22.2 ARCHITECTURE

To execute a program at the Web server’s site, the server creates a new process and

communicates with this process using the common gateway interface (CGI) pro-

tocol. The results of the program can be used to create an HTML document that is

returned to the requestor. Pages that are computed in this manner at the time they

646 Chapter 22

<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>

<BODY>

<FORM action="find_books.cgi" method=post>

Type an author name:

<INPUT type="text" name="authorName" size=30 maxlength=50>

<INPUT type="submit" value="Send it">

<INPUT type="reset" value="Clear form">

</FORM>

</BODY></HTML>

Figure 22.2 A Sample Web Page with Form Input

are requested are called dynamic pages; pages that exist and are simply delivered to

the Web browser are called static pages.

As an example, consider the sample page shown in Figure 22.2. This Web page contains

a form where a user can fill in the name of an author. If the user presses the ‘Send

it’ button, the Perl script ‘findBooks.cgi’ mentioned in Figure 22.2 is executed as a

separate process. The CGI protocol defines how the communication between the form

and the script is performed. Figure 22.3 illustrates the processes created when using

the CGI protocol.

Figure 22.4 shows an example CGI script, written in Perl. We have omitted error-

checking code for simplicity. Perl is an interpreted language that is often used for CGI

scripting and there are many Perl libraries called modules that provide high-level

interfaces to the CGI protocol. We use two such libraries in our example: DBI and

CGI. DBI is a database-independent API for Perl that allows us to abstract from the

DBMS being used—DBI plays the same role for Perl as JDBC does for Java. Here

we use DBI as a bridge to an ODBC driver that handles the actual connection to the

database. The CGI module is a convenient collection of functions for creating CGI

scripts. In part 1 of the sample script, we extract the content of the HTML form as

follows:

$authorName = $dataIn->param(‘authorName’);

Note that the parameter name authorName was used in the form in Figure 22.2 to name

the first input field. In part 2 we construct the actual SQL command in the variable

$sql. In part 3 we start to assemble the page that is returned to the Web browser.

We want to display the result rows of the query as entries in an unordered list, and

we start the list with its start tag . Individual list entries will be enclosed by the

 tag. Conveniently, the CGI protocol abstracts the actual implementation of how

the Web page is returned to the Web browser; the Web page consists simply of the

Internet Databases 647

Web Browser
HTTP

Web Server

Application
C++

CGI

CGI
CGI JDBC

Process 1

Process 2 DBMS

Figure 22.3 Process Structure with CGI Scripts

output of our program. Thus, everything that the script writes in print-statements

will be part of the dynamically constructed Web page that is returned to the Web

browser. Part 4 establishes the database connection and prepares and executes the

SQL statement that we stored in the variable $sql in part 2. In part 5, we fetch the

result of the query, one row at a time, and append each row to the output. Part 6

closes the connection to the database system and we finish in part 7 by appending the

closing format tags to the resulting page.

Alternative protocols, in which the program invoked by a request is executed within the

Web server process, have been proposed by Microsoft (Internet Server API (ISAPI))

and by Netscape (Netscape Server API (NSAPI)). Indeed, the TPC-C benchmark has

been executed, with good results, by sending requests from 1,500 PC clients to a Web

server and through it to an SQL database server.

22.2.1 Application Servers and Server-Side Java

In the previous section, we discussed how the CGI protocol can be used to dynamically

assemble Web pages whose content is computed on demand. However, since each page

request results in the creation of a new process this solution does not scale well to a large

number of simultaneous requests. This performance problem led to the development

of specialized programs called application servers. An application server has pre-

forked threads or processes and thus avoids the startup cost of creating a new process

for each request. Application servers have evolved into flexible middle tier packages

that provide many different functions in addition to eliminating the process-creation

overhead:

Integration of heterogeneous data sources: Most companies have data in

many different database systems, from legacy systems to modern object-relational

systems. Electronic commerce applications require integrated access to all these

data sources.

Transactions involving several data sources: In electronic commerce ap-

plications, a user transaction might involve updates at several data sources. An

648 Chapter 22

#!/usr/bin/perl

use DBI; use CGI;

part 1

$dataIn = new CGI;

$dataIn->header();

$authorName = $dataIn->param(‘authorName’);

part 2

$sql = "SELECT authorName, title FROM books ";

$sql += "WHERE authorName = " + $authorName;

part 3

print "<HTML><TITLE>Results:</TITLE> Results:";

part 4

$dbh = DBI->connect(‘DBI:ODBC:BookStore’, ‘webuser’, ‘password’);

$sth = $dbh->prepare($sql);

$sth->execute;

part 5

while (@row = $sth->fetchrow) {

print " @row \n";

}

part 6

$sth->finish;

$dbhandle->disconnect;

part 7

print "</HTML>";

exit;

Figure 22.4 A Simple Perl Script

Internet Databases 649

An example of a real application server—IBM WebSphere: IBM Web-

Sphere is an application server that provides a wide range of functionality. It

includes a full-fledged Web server and supports dynamic Web page generation.

WebSphere includes a Java Servlet run time environment that allows users to

extend the functionality of the server. In addition to Java Servlets, Websphere

supports other Web technologies such as Java Server Pages and JavaBeans. It

includes a connection manager that handles a pool of relational database connec-

tions and caches intermediate query results.

application server can ensure transactional semantics across data sources by pro-

viding atomicity, isolation, and durability. The transaction boundary is the

point at which the application server provides transactional semantics. If the

transaction boundary is at the application server, very simple client programs are

possible.

Security: Since the users of a Web application usually include the general pop-

ulation, database access is performed using a general-purpose user identifier that

is known to the application server. While communication between the server and

the application at the server side is usually not a security risk, communication

between the client (Web browser) and the Web server could be a security hazard.

Encryption is usually performed at the Web server, where a secure protocol (in

most cases the Secure Sockets Layer (SSL) protocol) is used to communicate

with the client.

Session management: Often users engage in business processes that take several

steps to complete. Users expect the system to maintain continuity during a session,

and several session identifiers such as cookies, URL extensions, and hidden fields

in HTML forms can be used to identify a session. Application servers provide

functionality to detect when a session starts and ends and to keep track of the

sessions of individual users.

A possible architecture for a Web site with an application server is shown in Figure

22.5. The client (a Web browser) interacts with the Web server through the HTTP

protocol. The Web server delivers static HTML or XML pages directly to the client.

In order to assemble dynamic pages, the Web server sends a request to the application

server. The application server contacts one or more data sources to retrieve necessary

data or sends update requests to the data sources. After the interaction with the data

sources is completed, the application server assembles the Web page and reports the

result to the Web server, which retrieves the page and delivers it to the client.

The execution of business logic at the Web server’s site, or server-side processing,

has become a standard model for implementing more complicated business processes

on the Internet. There are many different technologies for server-side processing and

650 Chapter 22

Web Browser
HTTP

Web Server

Application Server

Pool of servlets

JDBC/ODBC

JDBC

Application
JavaBeans

Application
C++

DBMS 2

DBMS 1

Figure 22.5 Process Structure in the Application Server Architecture

we only mention a few in this section; the interested reader is referred to the references

at the end of the chapter.

The Java Servlet API allows Web developers to extend the functionality of a Web

server by writing small Java programs called servlets that interact with the Web server

through a well-defined API. A servlet consists of mostly business logic and routines to

format relatively small datasets into HTML. Java servlets are executed in their own

threads. Servlets can continue to execute even after the client request that led to

their invocation is completed and can thus maintain persistent information between

requests. The Web server or application server can manage a pool of servlet threads,

as illustrated in Figure 22.5, and can therefore avoid the overhead of process creation

for each requests. Since servlets are written in Java, they are portable between Web

servers and thus allow platform-independent development of server-side applications.

Server-side applications can also be written using JavaBeans. JavaBeans are reusable

software components written in Java that perform well-defined tasks and can be conve-

niently packaged and distributed (together with any Java classes, graphics, and other

files they need) in JAR files. JavaBeans can be assembled to create larger applications

and can be easily manipulated using visual tools.

Java Server Pages (JSP) are yet another platform-independent alternative for gen-

erating dynamic content on the server side. While servlets are very flexible and pow-

erful, slight modifications, for example in the appearance of the output page, require

the developer to change the servlet and to recompile the changes. JSP is designed to

separate application logic from the appearance of the Web page, while at the same

time simplifying and increasing the speed of the development process. JSP separates

content from presentation by using special HTML tags inside a Web page to gener-

ate dynamic content. The Web server interprets these tags and replaces them with

dynamic content before returning the page to the browser.

Internet Databases 651

For example, consider the following Web page that includes JSP commands:

<HTML>

<H1>Hello</H1>

<P>Today is </P>

<jsp:useBean id=="clock" class=="calendar.jspCalendar" />

Day: <%==clock.getDayOfMonth() %>

Year: <%==clock.getYear() %>

</HTML>

We first load a JavaBean component through the tag <jsp:useBean> and then eval-

uate the getDayOfMonth member functions of the bean as marked in the directive

<%==clock.getDayOfMonth() %>.

The technique of including proprietary markup tags into an HTML file and dynamically

evaluating the contents of these tags while assembling the answer page is used in many

application servers. Such pages are generally known as HTML templates. For

example, Cold Fusion is an application server that allows special markup tags that can

include database queries. The following code fragment shows an example query:

<cfquery name="listBooks" datasource="books">

select * from books

</cfquery>

22.3 BEYOND HTML

While HTML is adequate to represent the structure of documents for display purposes,

the features of the language are not sufficient to represent the structure of data within

a document for more general applications than a simple display. For example, we

can send the HTML document shown in Figure 22.1 to another application and the

application can display the information about our books, but using the HTML tags

the application cannot distinguish the first names of the authors from their last names.

(The application can try to recover such information by looking at the text inside the

tags, but that defeats the purpose of structuring the data using tags.) Thus, HTML is

inadequate for the exchange of complex documents containing product specifications

or bids, for example.

Extensible Markup Language (XML) is a markup language that was developed

to remedy the shortcomings of HTML. In contrast to having a fixed set of tags whose

meaning is fixed by the language (as in HTML), XML allows the user to define new

collections of tags that can then be used to structure any type of data or document the

652 Chapter 22

The design goals of XML: XML was developed starting in 1996 by a working

group under guidance of the World Wide Web Consortium (W3C) XML Special

Interest Group. The design goals for XML included the following:

1. XML should be compatible with SGML.

2. It should be easy to write programs that process XML documents.

3. The design of XML should be formal and concise.

user wishes to transmit. XML is an important bridge between the document-oriented

view of data implicit in HTML and the schema-oriented view of data that is central to

a DBMS. It has the potential to make database systems more tightly integrated into

Web applications than ever before.

XML emerged from the confluence of two technologies, SGML and HTML. The Stan-

dard Generalized Markup Language (SGML) is a metalanguage that allows the

definition of data and document interchange languages such as HTML. The SGML

standard was published in 1988 and many organizations that manage a large num-

ber of complex documents have adopted it. Due to its generality, SGML is complex

and requires sophisticated programs to harness its full potential. XML was developed

to have much of the power of SGML while remaining relatively simple. Nonetheless,

XML, like SGML, allows the definition of new document markup languages.

Although XML does not prevent a user from designing tags that encode the display of

the data in a Web browser, there is a style language for XML called Extensible Style

Language (XSL). XSL is a standard way of describing how an XML document that

adheres to a certain vocabulary of tags should be displayed.

22.3.1 Introduction to XML

The short introduction to XML given in this section is not complete, and the references

at the end of this chapter provide starting points for the interested reader. We will

use the small XML document shown in Figure 22.6 as an example.

Elements. Elements, also called tags, are the primary building blocks of an XML

document. The start of the content of an element ELM is marked with <ELM>, which

is called the start tag, and the end of the content end is marked with </ELM>,

called the end tag. In our example document, the element BOOKLIST encloses

all information in the sample document. The element BOOK demarcates all data

associated with a single book. XML elements are case sensitive: the element

<BOOK> is different from <Book>. Elements must be properly nested. Start tags

Internet Databases 653

that appear inside the content of other tags must have a corresponding end tag.

For example, consider the following XML fragment:

<BOOK>

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>

</AUTHOR>

</BOOK>

The element AUTHOR is completely nested inside the element BOOK, and both the

elements LASTNAME and FIRSTNAME are nested inside the element AUTHOR.

Attributes. An element can have descriptive attributes that provide additional

information about the element. The values of attributes are set inside the start

tag of an element. For example, let ELM denote an element with the attribute

att. We can set the value of att to value through the following expression: <ELM

att="value">. All attribute values must be enclosed in quotes. In Figure 22.6,

the element BOOK has two attributes. The attribute genre indicates the genre of

the book (science or fiction) and the attribute format indicates whether the book

is a hardcover or a paperback.

Entity references. Entities are shortcuts for portions of common text or the

content of external files and we call the usage of an entity in the XML document

an entity reference. Wherever an entity reference appears in the document, it

is textually replaced by its content. Entity references start with a ‘&’ and end

with a ‘;’ . There are five predefined entities in XML that are placeholders for

characters with special meaning in XML. For example, the < character that marks

the beginning of an XML command is reserved and has to be represented by the

entity lt. The other four reserved characters are &, >, ”, and ’, and they are

represented by the entities amp, gt, quot, and apos. For example, the text ‘1 < 5’

has to be encoded in an XML document as follows: '1<5'. We

can also use entities to insert arbitrary Unicode characters into the text. Unicode

is a standard for character representations, and is similar to ASCII. For example,

we can display the Japanese Hiragana character ‘a’ using the entity reference

あ.

Comments. We can insert comments anywhere in an XML document. Com-

ments start with <!- and end with ->. Comments can contain arbitrary text

except the string --.

Document type declarations (DTDs). In XML, we can define our own

markup language. A DTD is a set of rules that allows us to specify our own

set of elements, attributes, and entities. Thus, a DTD is basically a grammar that

indicates what tags are allowed, in what order they can appear, and how they can

be nested. We will discuss DTDs in detail in the next section.

We call an XML document well-formed if it does not have an associated DTD but

follows the following structural guidelines:

654 Chapter 22

<?XML version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE BOOKLIST SYSTEM "books.dtd">

<BOOKLIST>

<BOOK genre="Science" format="Hardcover">

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>

</AUTHOR>

<TITLE>The Character of Physical Law</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

<BOOK genre="Fiction">

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>Waiting for the Mahatma</TITLE>

<PUBLISHED>1981</PUBLISHED>

</BOOK>

<BOOK genre="Fiction">

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>The English Teacher</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

</BOOKLIST>

Figure 22.6 Book Information in XML

The document starts with an XML declaration. An example of an XML declara-

tion is the first line of the XML document shown in Figure 22.6.

There is a root element that contains all the other elements. In our example, the

root element is the element BOOKLIST.

All elements must be properly nested. This requirement states that start and end

tags of an element must appear within the same enclosing element.

22.3.2 XML DTDs

A DTD is a set of rules that allows us to specify our own set of elements, attributes,

and entities. A DTD specifies which elements we can use and constraints on these

elements, e.g., how elements can be nested and where elements can appear in the

Internet Databases 655

<!DOCTYPE BOOKLIST [

<!ELEMENT BOOKLIST (BOOK)*>

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>

<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)>

<!ELEMENT FIRSTNAME (#PCDATA)>

<!ELEMENT LASTNAME (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT PUBLISHED (#PCDATA)>

<!ATTLIST BOOK genre (Science|Fiction) #REQUIRED>

<!ATTLIST BOOK format (Paperback|Hardcover) "Paperback">

]>

Figure 22.7 Bookstore XML DTD

document. We will call a document valid if there is a DTD associated with it and

the document is structured according to the rules set by the DTD. In the remainder

of this section, we will use the example DTD shown in Figure 22.7 to illustrate how to

construct DTDs.

A DTD is enclosed in <!DOCTYPE name [DTDdeclaration]>, where name is the name

of the outermost enclosing tag, and DTDdeclaration is the text of the rules of the DTD.

The DTD starts with the outermost element, also called the root element, which is

BOOKLIST in our example. Consider the next rule:

<!ELEMENT BOOKLIST (BOOK)*>

This rule tells us that the element BOOKLIST consists of zero or more BOOK elements.

The * after BOOK indicates how many BOOK elements can appear inside the BOOKLIST

element. A * denotes zero or more occurrences, a + denotes one or more occurrences,

and a ? denotes zero or one occurrence. For example, if we want to ensure that a

BOOKLIST has at least one book, we could change the rule as follows:

<!ELEMENT BOOKLIST (BOOK)+>

Let us look at the next rule:

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>

This rule states that a BOOK element contains a NAME element, a TITLE element, and an

optional PUBLISHED element. Note the use of the ? to indicate that the information is

optional by having zero or one occurrence of the element. Let us move ahead to the

following rule:

656 Chapter 22

<!ELEMENT LASTNAME (#PCDATA)>

Until now we only considered elements that contained other elements. The above rule

states that LASTNAME is an element that does not contain other elements, but contains

actual text. Elements that only contain other elements are said to have element

content, whereas elements that also contain #PCDATA are said to have mixed content.

In general, an element type declaration has the following structure:

<!ELEMENT (contentType) >

The are five possible content types:

Other elements.

The special symbol #PCDATA, which indicates (parsed) character data.

The special symbol EMPTY, which indicates that the element has no content. Ele-

ments that have no content are not required to have an end tag.

The special symbol ANY, which indicates that any content is permitted. This

content should be avoided whenever possible since it disables all checking of the

document structure inside the element.

A regular expression constructed from the above four choices. A regular ex-

pression is one of the following:

– exp1, exp2, exp3: A list of regular expressions.

– exp∗: An optional expression (zero or more occurrences).

– exp?: An optional expression (zero or one occurrences).

– exp+: A mandatory expression (one or more occurrences).

– exp1 | exp2: exp1 or exp2.

Attributes of elements are declared outside of the element. For example, consider the

following attribute declaration from Figure 22.7.

<!ATTLIST BOOK genre (Science|Fiction) #REQUIRED>

This XML DTD fragment specifies the attribute genre, which is an attribute of the

element BOOK. The attribute can take two values: Science or Fiction. Each BOOK

element must be described in its start tag by a genre attribute since the attribute is

required as indicated by #REQUIRED. Let us look at the general structure of a DTD

attribute declaration:

<!ATTLIST elementName (attName attType default)+ >

Internet Databases 657

The keyword ATTLIST indicates the beginning of an attribute declaration. The string

elementName is the name of the element that the following attribute definition is

associated with. What follows is the declaration of one or more attributes. Each

attribute has a name as indicated by attName and a type as indicated by attType.

XML defines several possible types for an attribute. We only discuss string types and

enumerated types here. An attribute of type string can take any string as a value.

We can declare such an attribute by setting its type field to CDATA. For example, we

can declare a third attribute of type string of the element BOOK as follows:

<!ATTLIST BOOK edition CDATA "1">

If an attribute has an enumerated type, we list all its possible values in the attribute

declaration. In our example, the attribute genre is an enumerated attribute type; its

possible attribute values are ‘Science’ and ‘Fiction’.

The last part of an attribute declaration is called its default specification. The

XML DTD in Figure 22.7 shows two different default specifications: #REQUIRED and

the string ‘Paperback’. The default specification #REQUIRED indicates that the at-

tribute is required and whenever its associated element appears somewhere in the

XML document a value for the attribute must be specified. The default specifica-

tion indicated by the string ‘Paperback’ indicates that the attribute is not required;

whenever its associated element appears without setting a value for the attribute, the

attribute automatically takes the value ‘Paperback’. For example, we can make the

attribute value ‘Science’ the default value for the genre attribute as follows:

<!ATTLIST BOOK genre (Science|Fiction) "Science">

The complete XML DTD language is much more powerful than the small part that

we have explained. The interested reader is referred to the references at the end of the

chapter.

22.3.3 Domain-Specific DTDs

Recently, DTDs have been developed for several specialized domains—including a wide

range of commercial, engineering, financial, industrial, and scientific domains—and a

lot of the excitement about XML has its origins in the belief that more and more

standardized DTDs will be developed. Standardized DTDs would enable seamless

data exchange between heterogeneous sources, a problem that is solved today either

by implementing specialized protocols such as Electronic Data Interchange (EDI)

or by implementing ad hoc solutions.

Even in an environment where all XML data is valid, it is not possible to straightfor-

wardly integrate several XML documents by matching elements in their DTDs because

658 Chapter 22

even when two elements have identical names in two different DTDs, the meaning of

the elements could be completely different. If both documents use a single, standard

DTD we avoid this problem. The development of standardized DTDs is more a social

process than a hard research problem since the major players in a given domain or

industry segment have to collaborate.

For example, the mathematical markup language (MathML) has been developed

for encoding mathematical material on the Web. There are two types of MathML ele-

ments. The 28 presentation elements describe the layout structure of a document;

examples are the mrow element, which indicates a horizontal row of characters, and

the msup element, which indicates a base and a subscript. The 75 content elements

describe mathematical concepts. An example is the plus element which denotes the

addition operator. (There is a third type of element, the math element, that is used

to pass parameters to the MathML processor.) MathML allows us to encode math-

ematical objects in both notations since the requirements of the user of the objects

might be different. Content elements encode the precise mathematical meaning of an

object without ambiguity and thus the description can be used by applications such

as computer algebra systems. On the other hand, good notation can suggest the log-

ical structure to a human and can emphasize key aspects of an object; presentation

elements allow us to describe mathematical objects at this level.

For example, consider the following simple equation:

x2 − 4x − 32 = 0

Using presentation elements, the equation is represented as follows:

<mrow>

<mrow> <msup><mi>x</mi><mn>2</mn></msup>

<mo>-</mo>

<mrow><mn>4</mn><mo>&invisibletimes;</mo><mi>x</mi></mrow>

<mo>-</mo><mn>32</mn>

</mrow><mo>=</mo><mn>0</mn>

</mrow>

Using content elements, the equation is described as follows:

<reln><eq/>

<apply>

<minus/>

<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>

<apply> <times/> <cn>4</cn> <ci>x</ci> </apply>

<cn>32</cn>

</apply> <cn>0</cn>

</reln>

Internet Databases 659

Note the additional power that we gain from using MathML instead of encoding the

formula in HTML. The common way of displaying mathematical objects inside an

HTML object is to include images that display the objects, for example as in the

following code fragment:

The equation is encoded inside an IMG tag with an alternative display format specified

in the ALT tag. Using this encoding of a mathematical object leads to the following

presentation problems. First, the image is usually sized to match a certain font size

and on systems with other font sizes the image is either too small or too large. Sec-

ond, on systems with a different background color the picture does not blend into the

background and the resolution of the image is usually inferior when printing the doc-

ument. Apart from problems with changing presentations, we cannot easily search for

a formula or formula fragments on a page, since there is no specific markup tag.

22.3.4 XML-QL: Querying XML Data

Given that data is encoded in a way that reflects (a considerable amount of) structure

in XML documents, we have the opportunity to use a high-level language that exploits

this structure to conveniently retrieve data from within such documents. Such a lan-

guage would bring XML data management much closer to database management than

the text-oriented paradigm of HTML documents. Such a language would also allow

us to easily translate XML data between different DTDs, as is required for integrating

data from multiple sources.

At the time of writing of this chapter (summer of 1999), the discussion about a stan-

dard query language for XML was still ongoing. In this section, we will give an informal

example of one specific query language for XML called XML-QL that has strong simi-

larities to several query languages that have been developed in the database community

(see Section 22.3.5).

Consider again the XML document shown in Figure 22.6. The following example query

returns the last names of all authors, assuming that our XML document resides at the

location www.ourbookstore.com/books.xml.

WHERE <BOOK>

<NAME><LASTNAME> $l </LASTNAME></NAME>

</BOOK> IN "www.ourbookstore.com/books.xml"

CONSTRUCT <RESULTNAME> $l </RESULTNAME>

This query extracts data from the XML document by specifying a pattern of markups.

We are interested in data that is nested inside a BOOK element, a NAME element, and

660 Chapter 22

a LASTNAME element. For each part of the XML document that matches the structure

specified by the query, the variable l is bound to the contents of the element LASTNAME.

To distinguish variable names from normal text, variable names are prefixed with a

dollar sign $. If this query is applied to the sample data shown in Figure 22.6, the

result would be the following XML document:

<RESULTNAME>Feynman</RESULTNAME>

<RESULTNAME>Narayan</RESULTNAME>

Selections are expressed by placing text in the content of an element. Also, the output

of a query is not limited to a single element. We illustrate these two points in the next

query. Assume that we want to find the last names and first names of all authors who

wrote a book that was published in 1980. We can express this query as follows:

WHERE <BOOK> <NAME>

<LASTNAME> $l </LASTNAME>

<FIRSTNAME> $f </FIRSTNAME>

</NAME>

<PUBLISHED>1980</PUBLISHED>

</BOOK> IN "www.ourbookstore.com/books.xml"

CONSTRUCT <RESULTNAME>

<FIRST>$f</FIRST><LAST>$l</LAST>

</RESULTNAME>

The result of the above query is the following XML document:

<RESULTNAME><FIRST>Richard</FIRST><LAST>Feynman</LAST></RESULTNAME>

<RESULTNAME><FIRST>R.K.</FIRST><LAST>Narayan</LAST></RESULTNAME>

We conclude our discussion with a slightly more complicated example. Suppose that

for each year we want to find the last names of authors who wrote a book published

in that year. We group by PUBLISHED and the result contains a list of last names for

each year:

WHERE <BOOK> $e <BOOK> IN "www.ourbookstore.com/books.xml",

<AUTHOR>$n</AUTHOR>,

<PUBLISHED>$p</PUBLISHED> IN $e

CONSTRUCT <RESULT><PUBLISHED> $p </PUBLISHED>

WHERE <LASTNAME> $l </LASTNAME> IN $n

CONSTRUCT <LASTNAME> $l </LASTNAME>

</RESULT>

Using the XML document in Figure 22.6 as input, this query produces the following

result:

Internet Databases 661

Commercial database systems and XML: Many relational and object-

relational database system vendors are currently looking into support for XML in

their database engines. Several vendors of object-oriented database management

systems already offer database engines that can store XML data whose contents

can be accessed through graphical user interfaces, server-side Java extensions, or

through XML-QL queries.

<RESULT> <PUBLISHED>1980</PUBLISHED>

<LASTNAME>Feynman</LASTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

<RESULT> <PUBLISHED>1981</PUBLISHED>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

22.3.5 The Semistructured Data Model

Consider a set of documents on the Web that contain hyperlinks to other documents.

These documents, although not completely unstructured, cannot be modeled naturally

in the relational data model because the pattern of hyperlinks is not regular across

documents. A bibliography file also has a certain degree of structure due to fields such

as author and title, but is otherwise unstructured text. While some data is completely

unstructured—for example video streams, audio streams, and image data—a lot of data

is neither completely unstructured nor completely structured. We refer to data with

partial structure as semistructured data. XML documents represent an important

and growing source of semistructured data, and the theory of semistructured data

models and queries has the potential to serve as the foundation for XML.

There are many reasons why data might be semistructured. First, the structure of data

might be implicit, hidden, unknown, or the user might choose to ignore it. Second,

consider the problem of integrating data from several heterogeneous sources where

data exchange and transformation are important problems. We need a highly flexible

data model to integrate data from all types of data sources including flat files and

legacy systems; a structured data model is often too rigid. Third, we cannot query a

structured database without knowing the schema, but sometimes we want to query the

data without full knowledge of the schema. For example, we cannot express the query

“Where in the database can we find the string Malgudi?” in a relational database

system without knowing the schema.

All data models proposed for semistructured data represent the data as some kind of

labeled graph. Nodes in the graph correspond to compound objects or atomic values,

662 Chapter 22

1980 1981
Character

Law

NarayanR.K.

Mahatma
for the

Waiting

BOOKBOOKBOOK

NAME NAME
FIRST

NAME

LAST

NAME

Richard Feynman

The

of Physical

FIRST LAST

TITLE PUBLISHEDAUTHOR AUTHOR TITLE PUBLISHED

Figure 22.8 The Semistructured Data Model

and edges correspond to attributes. There is no separate schema and no auxiliary

description; the data in the graph is self describing. For example, consider the graph

shown in Figure 22.8, which represents part of the XML data from Figure 22.6. The

root node of the graph represents the outermost element, BOOKLIST. The node has

three outgoing edges that are labeled with the element name BOOK, since the list of

books consists of three individual books.

We now discuss one of the proposed data models for semistructured data, called the

object exchange model (OEM). Each object is described by a triple consisting of

a label, a type, and the value of the object. (An object in the object exchange model

also has an object identifier, which is a unique identifier for the object. We omit object

identifiers from our discussion here; the references at the end of the chapter provide

pointers for the interested reader.) Since each object has a label that can be thought

of as the column name in the relational model, and each object has a type that can be

thought of as the column type in the relational model, the object exchange model is

basically self-describing. Labels in the object exchange model should be as informative

as possible, since they can serve two purposes: They can be used to identify an object

as well as to convey the meaning of an object. For example, we can represent the last

name of an author as follows:

〈lastName, string, "Feynman"〉

More complex objects are decomposed hierarchically into smaller objects. For example,

an author name can contain a first name and a last name. This object is described as

follows:

〈authorName, set, {firstname1, lastname1}〉

firstname1 is 〈firstName, string, "Richard"〉

lastname1 is 〈lastName, string, "Feynman"〉

As another example, an object representing a set of books is described as follows:

Internet Databases 663

〈bookList, set, {book1, book2, book3}〉

book1 is 〈book, set, {author1, title1, published1}〉

book2 is 〈book, set, {author2, title2, published2}〉

book3 is 〈book, set, {author3, title3, published3}〉

author3 is 〈author, set, {firstname3, lastname3}〉

title3 is 〈title, string, "The English Teacher"〉

published3 is 〈published, integer, 1980〉

22.3.6 Implementation Issues for Semistructured Data

Database system support for semistructured data has been the focus of much research

recently, and given the commercial success of XML, this emphasis is likely to continue.

Semistructured data poses new challenges, since most of the traditional storage, index-

ing, and query processing strategies assume that the data adheres to a regular schema.

For example, should we store semistructured data by mapping it into the relational

model and then store the mapped data in a relational database system? Or does a stor-

age subsystem specialized for semistructured data deliver better performance? How

can we index semistructured data? Given a query language like XML-QL, what are

suitable query processing strategies? Current research tries to find answers to these

questions.

22.4 INDEXING FOR TEXT SEARCH

In this section, we assume that our database is a collection of documents and we

call such a database a text database. For simplicity, we assume that the database

contains exactly one relation and that the relation schema has exactly one field of

type document. Thus, each record in the relation contains exactly one document. In

practice, the relation schema would contain other fields such as the date of the creation

of the document, a possible classification of the document, or a field with keywords

describing the document. Text databases are used to store newspaper articles, legal

papers, and other types of documents.

An important class of queries based on keyword search enables us to ask for all

documents containing a given keyword. This is the most common kind of query on

the Web today, and is supported by a number of search engines such as AltaVista

and Lycos. Some systems maintain a list of synonyms for important words and return

documents that contain a desired keyword or one of its synonyms; for example, a

query asking for documents containing car will also retrieve documents containing

automobile. A more complex query is “Find all documents that have keyword1 AND

keyword2.” For such composite queries, constructed with AND, OR, and NOT, we can

rank retrieved documents by the proximity of the query keywords in the document.

664 Chapter 22

There are two common types of queries for text databases: boolean queries and ranked

queries. In a boolean query, the user supplies a boolean expression of the following

form, which is called conjunctive normal form:

(t11 ∨ t12 ∨ . . . ∨ t1i1) ∧ . . . ∧ (tj1 ∨ t12 ∨ . . . ∨ t1ij
),

where the tij are individual query terms or keywords. The query consists of j con-

juncts, each of which consists of several disjuncts. In our query, the first conjunct is

the expression (t11 ∨ t12 ∨ . . . ∨ t1i1); it consists of i1 disjuncts. Queries in conjunctive

normal form have a natural interpretation. The result of the query are documents that

involve several concepts. Each conjunct corresponds to one concept, and the different

words within each conjunct correspond to different terms for the same concept.

Ranked queries are structurally very similar. In a ranked query the user also spec-

ifies a list of words, but the result of the query is a list of documents ranked by their

relevance to the list of user terms. How to define when and how relevant a document

is to a set of user terms is a difficult problem. Algorithms to evaluate such queries

belong to the field of information retrieval, which is closely related to database

management. Information retrieval systems, like database systems, have the goal of

enabling users to query a large volume of data, but the focus has been on large col-

lections of unstructured documents. Updates, concurrency control, and recovery have

traditionally not been addressed in information retrieval systems because the data in

typical applications is largely static.

The criteria used to evaluate such information retrieval systems include precision,

which is the percentage of retrieved documents that are relevant to the query, and

recall, which is the percentage of relevant documents in the database that are retrieved

in response to a query.

The advent of the Web has given fresh impetus to information retrieval because millions

of documents are now available to users and searching for desired information is a

fundamental operation; without good search mechanisms, users would be overwhelmed.

An index for an information retrieval system essentially contains 〈keyword,documentid〉

pairs, possibly with additional fields such as the number of times a keyword appears in

a document; a Web search engine creates a centralized index for documents that are

stored at several sites.

In the rest of this section, we concentrate on boolean queries. We introduce two

index schemas that support the evaluation of boolean queries efficiently. The inverted

file index discussed in Section 22.4.1 is widely used due to its simplicity and good

performance. Its main disadvantage is that it imposes a significant space overhead:

The size can be up to 300 percent the size of the original file. The signature file

index discussed in Section 22.4.2 has a small space overhead and offers a quick filter

that eliminates most nonqualifying documents. However, it scales less well to larger

Internet Databases 665

Rid Document Signature

1 agent James Bond 1100

2 agent mobile computer 1101

3 James Madison movie 1011

4 James Bond movie 1110

Word Inverted list Hash

agent 〈1, 2〉 1000

Bond 〈1, 4〉 0100

computer 〈2〉 0100

James 〈1, 3, 4〉 1000

Madison 〈3〉 0001

mobile 〈2〉 0001

movie 〈3, 4〉 0010

Figure 22.9 A Text Database with Four Records and Indexes

database sizes because the index has to be sequentially scanned. We discuss evaluation

of ranked queries in Section 22.5.

We assume that slightly different words that have the same root have been stemmed,

or analyzed for the common root, during index creation. For example, we assume

that the result of a query on ‘index’ also contains documents that include the terms

‘indexes’ and ‘indexing.’ Whether and how to stem is application dependent, and we

will not discuss the details.

As a running example, we assume that we have the four documents shown in Figure

22.9. For simplicity, we assume that the record identifiers of the four documents are the

numbers one to four. Usually the record identifiers are not physical addresses on the

disk, but rather entries in an address table. An address table is an array that maps

the logical record identifiers, as shown in Figure 22.9, to physical record addresses on

disk.

22.4.1 Inverted Files

An inverted file is an index structure that enables fast retrieval of all documents that

contain a query term. For each term, the index maintains an ordered list (called the

inverted list) of document identifiers that contain the indexed term. For example,

consider the text database shown in Figure 22.9. The query term ‘James’ has the

inverted list of record identifiers 〈1, 3, 4〉 and the query term ‘movie’ has the list 〈3, 4〉.

Figure 22.9 shows the inverted lists of all query terms.

In order to quickly find the inverted list for a query term, all possible query terms are

organized in a second index structure such as a B+ tree or a hash index. To avoid any

confusion, we will call the second index that allows fast retrieval of the inverted list for

a query term the vocabulary index. The vocabulary index contains each possible

query term and a pointer to its inverted list.

666 Chapter 22

A query containing a single term is evaluated by first traversing the vocabulary index

to the leaf node entry with the address of the inverted list for the term. Then the

inverted list is retrieved, the rids are mapped to physical document addresses, and

the corresponding documents are retrieved. A query with a conjunction of several

terms is evaluated by retrieving the inverted lists of the query terms one at a time and

intersecting them. In order to minimize memory usage, the inverted lists should be

retrieved in order of increasing length. A query with a disjunction of several terms is

evaluated by merging all relevant inverted lists.

Consider again the example text database shown in Figure 22.9. To evaluate the query

‘James’, we probe the vocabulary index to find the inverted list for ‘James’, fetch the

inverted list from disk and then retrieve document one. To evaluate the query ‘James’

AND ‘Bond’, we retrieve the inverted list for the term ‘Bond’ and intersect it with the

inverted list for the term ‘James.’ (The inverted list of the term ‘Bond’ has length

two, whereas the inverted list of the term ‘James’ has length three.) The result of the

intersection of the list 〈1, 4〉 with the list 〈1, 3, 4〉 is the list 〈1, 4〉 and the first and

fourth document are retrieved. To evaluate the query ‘James’ OR ‘Bond,’ we retrieve

the two inverted lists in any order and merge the results.

22.4.2 Signature Files

A signature file is another index structure for text database systems that supports

efficient evaluation of boolean queries. A signature file contains an index record for each

document in the database. This index record is called the signature of the document.

Each signature has a fixed size of b bits; b is called the signature width. How do we

decide which bits to set for a document? The bits that are set depend on the words

that appear in the document. We map words to bits by applying a hash function to

each word in the document and we set the bits that appear in the result of the hash

function. Note that unless we have a bit for each possible word in the vocabulary, the

same bit could be set twice by different words because the hash function maps both

words to the same bit. We say that a signature S1 matches another signature S2 if

all the bits that are set in signature S2 are also set in signature S1. If signature S1

matches signature S2, then signature S1 has at least as many bits set as signature S2.

For a query consisting of a conjunction of terms, we first generate the query signature

by applying the hash function to each word in the query. We then scan the signature file

and retrieve all documents whose signatures match the query signature, because every

such document is a potential result to the query. Since the signature does not uniquely

identify the words that a document contains, we have to retrieve each potential match

and check whether the document actually contains the query terms. A document

whose signature matches the query signature but that does not contain all terms in

the query is called a false positive. A false positive is an expensive mistake since the

Internet Databases 667

document has to be retrieved from disk, parsed, stemmed, and checked to determine

whether it contains the query terms.

For a query consisting of a disjunction of terms, we generate a list of query signatures,

one for each term in the query. The query is evaluated by scanning the signature file to

find documents whose signatures match any signature in the list of query signatures.

Note that for each query we have to scan the complete signature file, and there are

as many records in the signature file as there are documents in the database. To

reduce the amount of data that has to be retrieved for each query, we can vertically

partition a signature file into a set of bit slices, and we call such an index a bit-sliced

signature file. The length of each bit slice is still equal to the number of documents

in the database, but for a query with q bits set in the query signature we need only to

retrieve q bit slices.

As an example, consider the text database shown in Figure 22.9 with a signature file of

width 4. The bits set by the hashed values of all query terms are shown in the figure.

To evaluate the query ‘James,’ we first compute the hash value of the term which is

1000. Then we scan the signature file and find matching index records. As we can

see from Figure 22.9, the signatures of all records have the first bit set. We retrieve

all documents and check for false positives; the only false positive for this query is

document with rid 2. (Unfortunately, the hashed value of the term ‘agent’ also sets

the very first bit in the signature.) Consider the query ‘James’ AND ‘Bond.’ The query

signature is 1100 and three document signatures match the query signature. Again,

we retrieve one false positive. As another example of a conjunctive query, consider

the query ‘movie’ AND ‘Madison.’ The query signature is 0011, and only one document

signature matches the query signature. No false positives are retrieved. The reader is

invited to construct a bit-sliced signature file and to evaluate the example queries in

this paragraph using the bit slices.

22.5 RANKED KEYWORD SEARCHES ON THE WEB

The World Wide Web contains a mind-boggling amount of information. Finding Web

pages that are relevant to a user query can be more difficult than finding a needle in

a haystack. The variety of pages in terms of structure, content, authorship, quality,

and validity of the data makes it difficult if not impossible to apply standard retrieval

techniques.

For example, a boolean text search as discussed in Section 22.4 is not sufficient because

the result for a query with a single term could consist of links to thousands, if not

millions of pages, and we rarely have the time to browse manually through all of them.

Even if we pose a more sophisticated query using conjunction and disjunction of terms

the number of Web pages returned is still several hundreds for any topic of reasonable

668 Chapter 22

breadth. Thus, querying effectively using a boolean keyword search requires expert

users who can carefully combine terms specifying a very narrowly defined subject.

One natural solution to the excessive number of answers returned by boolean keyword

searches is to take the output of the boolean text query and somehow process this set

further to find the most relevant pages. For abstract concepts, however, often the most

relevant pages do not contain the search terms at all and are therefore not returned

by a boolean keyword search! For example, consider the query term ‘Web browser.’

A boolean text query using the terms does not return the relevant pages of Netscape

Corporation or Microsoft, because these pages do not contain the term ‘Web browser’

at all. Similarly, the home page of Yahoo does not contain the term ‘search engine.’

The problem is that relevant sites do not necessarily describe their contents in a way

that is useful for boolean text queries.

Until now, we only considered information within a single Web page to estimate its

relevance to a query. But Web pages are connected through hyperlinks, and it is quite

likely that there is a Web page containing the term ‘search engine’ that has a link to

Yahoo’s home page. Can we use the information hidden in such links?

In our search for relevant pages, we distinguish between two types of pages: authorities

and hubs. An authority is a page that is very relevant to a certain topic and that is

recognized by other pages as authoritative on the subject. These other pages, called

hubs, usually have a significant number of hyperlinks to authorities, although they

themselves are not very well known and do not necessarily carry a lot of content

relevant to the given query. Hub pages could be compilations of resources about

a topic on a site for professionals, lists of recommended sites for the hobbies of an

individual user, or even a part of the bookmarks of an individual user that are relevant

to one of the user’s interests; their main property is that they have many outgoing

links to relevant pages. Good hub pages are often not well known and there may be

few links pointing to a good hub. In contrast, good authorities are ‘endorsed’ by many

good hubs and thus have many links from good hub pages.

We will use this symbiotic relationship between hubs and authorities in the HITS

algorithm, a link-based search algorithm that discovers high-quality pages that are

relevant to a user’s query terms.

22.5.1 An Algorithm for Ranking Web Pages

In this section we will discuss HITS, an algorithm that finds good authorities and hubs

and returns them as the result of a user query. We view the World Wide Web as a

directed graph. Each Web page represents a node in the graph, and a hyperlink from

page A to page B is represented as an edge between the two corresponding nodes.

Internet Databases 669

Assume that we are given a user query with several terms. The algorithm proceeds in

two steps. In the first step, the sampling step, we collect a set of pages called the base

set. The base set most likely includes very relevant pages to the user’s query, but the

base set can still be quite large. In the second step, the iteration step, we find good

authorities and good hubs among the pages in the base set.

The sampling step retrieves a set of Web pages that contain the query terms, using

some traditional technique. For example, we can evaluate the query as a boolean

keyword search and retrieve all Web pages that contain the query terms. We call the

resulting set of pages the root set. The root set might not contain all relevant pages

because some authoritative pages might not include the user query words. But we

expect that at least some of the pages in the root set contain hyperlinks to the most

relevant authoritative pages or that some authoritative pages link to pages in the root

set. This motivates our notion of a link page. We call a page a link page if it has a

hyperlink to some page in the root set or if a page in the root set has a hyperlink to

it. In order not to miss potentially relevant pages, we augment the root set by all link

pages and we call the resulting set of pages the base set. Thus, the base set includes

all root pages and all link pages; we will refer to a Web page in the base set as a base

page.

Our goal in the second step of the algorithm is to find out which base pages are good

hubs and good authorities and to return the best authorities and hubs as the answers

to the query. To quantify the quality of a base page as a hub and as an authority,

we associate with each base page in the base set a hub weight and an authority

weight. The hub weight of the page indicates the quality of the page as a hub, and

the authority weight of the page indicates the quality of the page as an authority. We

compute the weights of each page according to the intuition that a page is a good

authority if many good hubs have hyperlinks to it, and that a page is a good hub if it

has many outgoing hyperlinks to good authorities. Since we do not have any a priori

knowledge about which pages are good hubs and authorities, we initialize all weights

to one. We then update the authority and hub weights of base pages iteratively as

described below.

Consider a base page p with hub weight hp and with authority weight ap. In one

iteration, we update ap to be the sum of the hub weights of all pages that have a

hyperlink to p. Formally:

ap =
∑

All base pages q that have a link to p

hq

Analogously, we update hp to be the sum of the weights of all pages that p points to:

hp =
∑

All base pages q such that p has a link to q

aq

670 Chapter 22

Computing hub and authority weights: We can use matrix notation to write

the updates for all hub and authority weights in one step. Assume that we number

all pages in the base set {1, 2, ..., n}. The adjacency matrix B of the base set is

an n×n matrix whose entries are either 0 or 1. The matrix entry (i, j) is set to 1

if page i has a hyperlink to page j; it is set to 0 otherwise. We can also write the

hub weights h and authority weights a in vector notation: h = 〈h1, . . . , hn〉 and

a = 〈a1, . . . , an〉. We can now rewrite our update rules as follows:

h = B · a, and a = BT · h .

Unfolding this equation once, corresponding to the first iteration, we obtain:

h = BBT h = (BBT)h, and a = BT Ba = (BT B)a .

After the second iteration, we arrive at:

h = (BBT)2h, and a = (BT B)2a .

Results from linear algebra tell us that the sequence of iterations for the hub (resp.

authority) weights converges to the principal eigenvectors of BBT (resp. BT B)

if we normalize the weights before each iteration so that the sum of the squares

of all weights is always 2 · n. Furthermore, results from linear algebra tell us that

this convergence is independent of the choice of initial weights, as long as the

initial weights are positive. Thus, our rather arbitrary choice of initial weights—

we initialized all hub and authority weights to 1—does not change the outcome

of the algorithm.

Comparing the algorithm with the other approaches to querying text that we discussed

in this chapter, we note that the iteration step of the HITS algorithm—the distribu-

tion of the weights—does not take into account the words on the base pages. In the

iteration step, we are only concerned about the relationship between the base pages as

represented by hyperlinks.

The HITS algorithm often produces very good results. For example, the five highest

ranked authorities for the query ‘search engines’ are the following Web pages:

http://www.yahoo.com/

http://www.excite.com/

http://www.mckinley.com/

http://www.lycos.com/

http://www.altavista.digital.com/

The three highest ranked authorities for the query containing the single keyword ‘Gates’

are the following Web pages:

Internet Databases 671

http://www.roadahead.com/

http://www.microsoft.com/

http://www.microsoft.com/corpinfo/bill-g.htm

22.6 POINTS TO REVIEW

Files on the World Wide Web are identified through universal resource locators

(URLs). A Web browser takes a URL, goes to the site containing the file, and

asks the Web server at that site for the file. It then displays the file appropriately,

taking into account the type of file and the formatting instructions that it contains.

The browser calls application programs to handle certain types of files, e.g., it

calls Microsoft Word to handle Word documents (which are identified through a

.doc file name extension). HTML is a simple markup language used to describe

a document. Audio, video, and even Java programs can be included in HTML

documents.

Increasingly, data accessed through the Web is stored in DBMSs. A Web server

can access data in a DBMS to construct a page requested by a Web browser.

(Section 22.1)

A Web server often has to execute a program at its site in order to satisfy a request

from a Web browser (which is usually executing at a different site). For example,

it may have to access data in a DBMS. There are two ways for a Web server to

execute a program: It can create a new process and communicate with it using the

CGI protocol, or it can create a new thread (or invoke an existing thread) for a

Java servlet. The second approach avoids the overhead of creating a new process

for each request. An application server manages several threads and provides

other functionality to facilitate executing programs at the Web server’s site. The

additional functionality includes security, session management, and coordination

of access to multiple data sources. JavaBeans and Java Server Pages are Java-

based technologies that assist in creating and managing programs designed to be

invoked by a Web server. (Section 22.2)

XML is an emerging document description standard that allows us to describe

the content and structure of a document in addition to giving display directives.

It is based upon HTML and SGML, which is a powerful document description

standard that is widely used. XML is designed to be simple enough to permit

easy manipulation of XML documents, in contrast to SGML, while allowing users

to develop their own document descriptions, unlike HTML. In particular, a DTD

is a document description that is independent of the contents of a document, just

like a relational database schema is a description of a database that is independent

of the actual database instance. The development of DTDs for different applica-

tion domains offers the potential that documents in these domains can be freely

exchanged and uniformly interpreted according to standard, agreed-upon DTD

descriptions. XML documents have less rigid structure than a relational database

672 Chapter 22

and are said to be semistructured. Nonetheless, there is sufficient structure to

permit many useful queries, and query languages are being developed for XML

data. (Section 22.3)

The proliferation of text data on the Web has brought renewed attention to in-

formation retrieval techniques for searching text. Two broad classes of search are

boolean queries and ranked queries. Boolean queries ask for documents containing

a specified boolean combination of keywords. Ranked queries ask for documents

that are most relevant to a given list of keywords; the quality of answers is eval-

uated using precision (the percentage of retrieved documents that are relevant to

the query) and recall (the percentage of relevant documents in the database that

are retrieved) as metrics.

Inverted files and signature files are two indexing techniques that support boolean

queries. Inverted files are widely used and perform well, but have a high space

overhead. Signature files address the space problem associated with inverted files

but must be sequentially scanned. (Section 22.4)

Handling ranked queries on the Web is a difficult problem. The HITS algorithm

uses a combination of boolean queries and analysis of links to a page from other

Web sites to evaluate ranked queries. The intuition is to find authoritative sources

for the concepts listed in the query. An authoritative source is likely to be fre-

quently cited. A good source of citations is likely to cite several good authorities.

These observations can be used to assign weights to sites and identify which sites

are good authorities and hubs for a given query. (Section 22.5)

EXERCISES

Exercise 22.1 Briefly answer the following questions.

1. Define the following terms and describe what they are used for: HTML, URL, CGI,

server-side processing, Java Servlet, JavaBean, Java server page, HTML template, CCS,

XML, DTD, XSL, semistructured data, inverted file, signature file.

2. What is CGI? What are the disadvantages of an architecture using CGI scripts?

3. What is the difference between a Web server and an application server? What funcional-

ity do typical application servers provide?

4. When is an XML document well-formed? When is an XML document valid?

Exercise 22.2 Consider our bookstore example again. Assume that customers also want to

search books by title.

1. Extend the HTML document shown in Figure 22.2 by another form that allows users to

input the title of a book.

2. Write a Perl script similar to the Perl script shown in Figure 22.3 that generates dynam-

ically an HTML page with all books that have the user-specified title.

Internet Databases 673

Exercise 22.3 Consider the following description of items shown in the Eggface computer

mail-order catalog.

“Eggface sells hardware and software. We sell the new Palm Pilot V for $400; its part number

is 345. We also sell the IBM ThinkPad 570 for only $1999; choose part number 3784. We sell

both business and entertainment software. Microsoft Office 2000 has just arrived and you can

purchase the Standard Edition for only $140, part number 974. The new desktop publishing

software from Adobe called InDesign is here for only $200, part 664. We carry the newest

games from Blizzard software. You can start playing Diablo II for only $30, part number 12,

and you can purchase Starcraft for only $10, part number 812.”

1. Design an HTML document that depicts the items offered by Eggface.

2. Create a well-formed XML document that describes the contents of the Eggface catalog.

3. Create a DTD for your XML document and make sure that the document you created

in the last question is valid with respect to this DTD.

4. Write an XML-QL query that lists all software items in the catalog.

5. Write an XML-QL query that lists the prices of all hardware items in the catalog.

6. Depict the catalog data in the semistructured data model as shown in Figure 22.8.

Exercise 22.4 A university database contains information about professors and the courses

they teach. The university has decided to publish this information on the Web and you are

in charge of the execution. You are given the following information about the contents of the

database:

In the fall semester 1999, the course ‘Introduction to Database Management Systems’ was

taught by Professor Ioannidis. The course took place Mondays and Wednesdays from 9–10

a.m. in room 101. The discussion section was held on Fridays from 9–10 a.m. Also in the fall

semester 1999, the course ‘Advanced Database Management Systems’ was taught by Professor

Carey. Thirty five students took that course which was held in room 110 Tuesdays and

Thursdays from 1–2 p.m. In the spring semester 1999, the course ‘Introduction to Database

Management Systems’ was taught by U.N. Owen on Tuesdays and Thursdays from 3–4 p.m.

in room 110. Sixty three students were enrolled; the discussion section was on Thursdays

from 4–5 p.m. The other course taught in the spring semester was ‘Advanced Database

Management Systems’ by Professor Ioannidis, Monday, Wednesday, and Friday from 8–9 a.m.

1. Create a well-formed XML document that contains the university database.

2. Create a DTD for your XML document. Make sure that the XML document is valid

with respect to this DTD.

3. Write an XML-QL query that lists the name of all professors.

4. Describe the information in a different XML document—a document that has a different

structure. Create a corresponding DTD and make sure that the document is valid. Re-

formulate your XML-QL query that finds the names of all professors to work with the

new DTD.

674 Chapter 22

Exercise 22.5 Consider the database of the FamilyWear clothes manufacturer. FamilyWear

produces three types of clothes: women’s clothes, men’s clothes, and children’s clothes. Men

can choose between polo shirts and T-shirts. Each polo shirt has a list of available colors,

sizes, and a uniform price. Each T-shirt has a price, a list of available colors, and a list of

available sizes. Women have the same choice of polo shirts and T-shirts as men. In addition

women can choose between three types of jeans: slim fit, easy fit, and relaxed fit jeans. Each

pair of jeans has a list of possible waist sizes and possible lengths. The price of a pair of jeans

only depends on its type. Children can choose between T-shirts and baseball caps. Each

T-shirt has a price, a list of available colors, and a list of available patterns. T-shirts for

children all have the same size. Baseball caps come in three different sizes: small, medium,

and large. Each item has an optional sales price that is offered on special occasions.

Design an XML DTD for FamilyWear so that FamilyWear can publish its catalog on the Web.

Exercise 22.6 Assume you are given a document database that contains six documents.

After stemming, the documents contain the following terms:

Document Terms

1 car manufacturer Honda auto

2 auto computer navigation

3 Honda navigation

4 manufacturer computer IBM

5 IBM personal computer

6 car Beetle VW

Answer the following questions.

1. Discuss the advantages and disadvantages of inverted files versus signature files.

2. Show the result of creating an inverted file on the documents.

3. Show the result of creating a signature file with a width of 5 bits. Construct your own

hashing function that maps terms to bit positions.

4. Evaluate the following queries using the inverted file and the signature file that you

created: ‘car’, ‘IBM’ AND ‘computer’, ‘IBM’ AND ‘car’, ‘IBM’ OR ‘auto’, and ‘IBM’ AND

‘computer’ AND ‘manufacturer’.

5. Assume that the query load against the document database consists of exactly the queries

that were stated in the previous question. Also assume that each of these queries is

evaluated exactly once.

(a) Design a signature file with a width of 3 bits and design a hashing function that

minimizes the overall number of false positives retrieved when evaluating the

(b) Design a signature file with a width of 6 bits and a hashing function that minimizes

the overall number of false positives.

(c) Assume you want to construct a signature file. What is the smallest signature

width that allows you to evaluate all queries without retrieving any false positives?

Exercise 22.7 Assume that the base set of the HITS algorithm consists of the set of Web

pages displayed in the following table. An entry should be interpreted as follows: Web page

1 has hyperlinks to pages 5 and 6.

Internet Databases 675

Web page Pages that this page has links to

1 5, 6, 7

2 5, 7

3 6, 8

4

5 1, 2

6 1, 3

7 1, 2

8 4

Run five iterations of the HITS algorithm and find the highest ranked authority and the

highest ranked hub.

BIBLIOGRAPHIC NOTES

The latest version of the standards mentioned in this chapter can be found from the Web pages

of the World Wide Web Consortium (www.w3.org). Its Web site contains links to information

about HTML, cascading style sheets, XML, XSL, and much more. The book by Hall is a

general introduction to Web programming technologies [302]; a good starting point on the

Web is www.Webdeveloper.com. There are many introductory books on CGI programming,

for example [176, 166]. The JavaSoft (java.sun.com) home page is a good starting point for

JavaBeans, Servlets, JSP, and all other Java-related technologies. The book by Hunter [333]

is a good introduction to Java Servlets. Microsoft supports Active Server Pages (ASP), a

comparable technology to JSP. More information about ASP can be found on the Microsoft

Developer’s Network homepage (msdn.microsoft.com).

There are excellent Web sites devoted to the advancement of XML, for example www.xml.com

and www.ibm.com/xml, that also contain a plethora of links with information about the other

standards. There are good introductory books on many different aspects of XML, for example

[164, 135, 520, 411, 321, 271]. Information about UNICODE can be found on its home page

http://www.unicode.org.

There is a lot of research on semistructured data in the database community. The Tsimmis

data integration system uses a semistructured data model to cope with possible heterogene-

ity of data sources [509, 508]. Several new query languages for semistructured data have

been developed: LOREL [525], UnQL [106], StruQL [233], and WebSQL [458]. LORE is a

database management system designed for semistructured data [450]. Query optimization for

semistructured data is addressed in [5, 272]. Work on describing the structure of semistruc-

tured databases can be found in [490, 272].

There has been a lot of work on using semistructured data models for Web data and several

Web query systems have been developed: WebSQL [458], W3QS [384], WebLog [399], We-

bOQL [32], STRUDEL [232], ARANEUS [39], and FLORID [319]. [237] is a good overview

of database research in the context of the Web.

Introductory reading material on information retrieval includes the standard textbooks by

Salton and McGill [562] and by van Rijsbergen [661]. Collections of articles for the more

676 Chapter 22

advanced reader have been edited by Jones and Willett [350] and by Frakes and Baeza-Yates

[239]. Querying text repositories has been studied extensively in information retrieval; see

[545] for a recent survey. Faloutsos overviews indexing methods for text databases [219].

Inverted files are discussed in [469] and signature files are discussed in [221]. Zobel, Moffat,

and Ramamohanarao give a comparison of inverted files and signature files [703]. Other

aspects of indexing for text databases are addressed in [704]. The book by Witten, Moffat,

and Bell has a lot of material on compression techniques for document databases [685].

The number of citation counts as a measure of scientific impact has first been studied by

Garfield [262]; see also [670]. Usage of hypertextual information to improve the quality of

search engines has been proposed by Spertus [610] and by Weiss et al. [676]. The HITS

algorithm was developed by Jon Kleinberg [376]. Concurrently, Brin and Page developed

the Pagerank algorithm, which also takes hyperlinks between pages into account [99]. The

discovery of structure in the World Wide Web is currently a very active area of research; see

for example the work by Gibson et al. [268].

